Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5908
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDHAR, DEEPAKen_US
dc.contributor.authorRajesh, R.en_US
dc.date.accessioned2021-05-31T10:22:54Z
dc.date.available2021-05-31T10:22:54Z
dc.date.issued2021-04en_US
dc.identifier.citationPhysical Review E, 103(4), 042130.en_US
dc.identifier.issn2470-0045en_US
dc.identifier.issn2470-0053en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5908
dc.identifier.urihttps://doi.org/10.1103/PhysRevE.103.042130en_US
dc.description.abstractWe determine the asymptotic behavior of the entropy of full coverings of a L x M square lattice by rods of size k x 1 and 1 x k, in the limit of large k. We show that full coverage is possible only if at least one of L and M is a multiple of k, and that all allowed configurations can be reached from a standard configuration of all rods being parallel, using only basic flip moves that replace a k x k square of parallel horizontal rods by vertical rods, and vice versa. In the limit of large k, we show that the entropy per site S-2 (k) tends to Ak(-2) ln k, with A = 1. We conjecture, based on a perturbative series expansion, that this large-k behavior of entropy per site is superuniversal and continues to hold on all d-dimensional hypercubic lattices, with d >= 2.en_US
dc.language.isoenen_US
dc.publisherAmerican Physical Societyen_US
dc.subjectPhase-Transitionsen_US
dc.subjectStatistical-Mechanicsen_US
dc.subjectBehavioren_US
dc.subjectDimersen_US
dc.subjectThermodynamicsen_US
dc.subjectRectanglesen_US
dc.subjectSystemsen_US
dc.subjectSphereen_US
dc.subjectGasen_US
dc.subject2021-MAY-WEEK5en_US
dc.subjectTOC-MAY-2021en_US
dc.subject2021en_US
dc.titleEntropy of fully packed hard rigid rods on d-dimensional hypercubic latticesen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Physicsen_US
dc.identifier.sourcetitlePhysical Review Een_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.