Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5988
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKAUR, YASHPREETen_US
dc.contributor.authorSrinivasan, Varadharaj R.en_US
dc.date.accessioned2021-06-30T09:19:11Z
dc.date.available2021-06-30T09:19:11Z
dc.date.issued2021-06en_US
dc.identifier.citationApplicable Algebra in Engineering Communication and Computing.en_US
dc.identifier.issn0938-1279en_US
dc.identifier.issn1432-0622en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5988-
dc.identifier.urihttps://doi.org/10.1007/s00200-021-00518-3en_US
dc.description.abstractWe extend the theorem of Liouville on integration in finite terms to include dilogarithmic integrals. The results provide a necessary and sufficient condition for an element of the base field to have an antiderivative in a field extension generated by transcendental elementary functions and dilogarithmic integrals.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectDifferential Fieldsen_US
dc.subjectDilogarithmic Integralsen_US
dc.subjectElementary Extensionsen_US
dc.subjectLiouville's Theoremen_US
dc.subject2021-JUN-WEEK5en_US
dc.subjectTOC-JUN-2021en_US
dc.subject2021en_US
dc.titleIntegration in finite terms: dilogarithmic integralsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleApplicable Algebra in Engineering Communication and Computingen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.