Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5988
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | KAUR, YASHPREET | en_US |
dc.contributor.author | Srinivasan, Varadharaj R. | en_US |
dc.date.accessioned | 2021-06-30T09:19:11Z | |
dc.date.available | 2021-06-30T09:19:11Z | |
dc.date.issued | 2021-06 | en_US |
dc.identifier.citation | Applicable Algebra in Engineering Communication and Computing. | en_US |
dc.identifier.issn | 0938-1279 | en_US |
dc.identifier.issn | 1432-0622 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/5988 | - |
dc.identifier.uri | https://doi.org/10.1007/s00200-021-00518-3 | en_US |
dc.description.abstract | We extend the theorem of Liouville on integration in finite terms to include dilogarithmic integrals. The results provide a necessary and sufficient condition for an element of the base field to have an antiderivative in a field extension generated by transcendental elementary functions and dilogarithmic integrals. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Nature | en_US |
dc.subject | Differential Fields | en_US |
dc.subject | Dilogarithmic Integrals | en_US |
dc.subject | Elementary Extensions | en_US |
dc.subject | Liouville's Theorem | en_US |
dc.subject | 2021-JUN-WEEK5 | en_US |
dc.subject | TOC-JUN-2021 | en_US |
dc.subject | 2021 | en_US |
dc.title | Integration in finite terms: dilogarithmic integrals | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Applicable Algebra in Engineering Communication and Computing | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.