Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6044
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSINHA, KANEENIKAen_US
dc.contributor.authorCHAKRABORTY, ARIJITen_US
dc.date.accessioned2021-07-08T05:10:57Z-
dc.date.available2021-07-08T05:10:57Z-
dc.date.issued2021-06-
dc.identifier.citation58en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6044-
dc.description.abstractAn elliptic curve $E$ over a field $\mathbb{F}$ can be defined by the equation $$y^2 = x^3 + ax+ b,$$ where $a, \, b \in \mathbb{F}.$ For any $r \geq 1$, let $a_E{(p^r)}$ denote the trace of the Frobenius endomorphism of $E$ over the field $\mathbb{F}_{p^r}$, $p$ being a prime. For a natural number $k$, let $\kappa$ denote the set of all $k$-th powers of natural numbers. James and Yu in their work computed the distribution of $$\{a_E{(p)}:\,a_E{(p)}\in \kappa\}$$ as the primes $p \to \infty$ by averaging over suitable families of elliptic curves. In this thesis, we review the work of James and Yu. In an effort to obtain a smooth analogue of the main result proved by James-Yu, we present a methodology for the same and explain the technical problems encountered. At the end of this thesis, we provide a result about the distribution of ${a_E}{(p^2)}$ by taking the average over a family of elliptic curves.en_US
dc.language.isoenen_US
dc.subjectAnalytic Number Theoryen_US
dc.titleAverage Frobenius Distribution in Families of Elliptic Curvesen_US
dc.typeThesisen_US
dc.type.degreeBS-MSen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.contributor.registration20161136en_US
Appears in Collections:MS THESES

Files in This Item:
File Description SizeFormat 
MS_Thesis.pdf486.39 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.