Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/607
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSPALLONE, STEVENen_US
dc.contributor.authorSHUKLA, ABHISHEKen_US
dc.date.accessioned2016-05-06T08:31:30Z
dc.date.available2016-05-06T08:31:30Z
dc.date.issued2016-04en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/607-
dc.description.abstractIn this thesis, motivated by the Inverse Galois Problem, we prove the occurence of Sn as Galois group over any global field. While Hilbert’s Irreducibility Theorem, the main ingredient of this proof, can be proved(for Q) using elementary methods of complex analysis, we do not follow this approach. We give a general form of Hilbert’s Irreducibility Theorem which says that all global fields are Hilbertian. Proving this takes us to Riemann hypothesis for curves and Chebotarev Density Theorem for function fields. In addition we prove the Chebotarev Density Theorem for Number Fields. The main reference for this thesis is [1] and the proofs are borrowed from the same.en_US
dc.language.isoenen_US
dc.subject2016
dc.subjectabhisheken_US
dc.subjectmathematicsen_US
dc.subjectgaloisen_US
dc.titleInverse Galois Problemen_US
dc.typeThesisen_US
dc.type.degreeBS-MSen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.contributor.registration20111080en_US
Appears in Collections:MS THESES

Files in This Item:
File Description SizeFormat 
thesis_abhishek shukla_2011080.pdf816.78 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.