Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6323
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | BHAKTA, MOUSOMI | en_US |
dc.contributor.author | CHAKRABORTY, SOUPTIK | en_US |
dc.contributor.author | Miyagaki, Olimpio H. | en_US |
dc.contributor.author | Pucci, Patrizia | en_US |
dc.date.accessioned | 2021-10-18T10:30:52Z | |
dc.date.available | 2021-10-18T10:30:52Z | |
dc.date.issued | 2021-11 | en_US |
dc.identifier.citation | Nonlinearity, 34(11), 7540. | en_US |
dc.identifier.issn | 0951-7715 | en_US |
dc.identifier.issn | 1361-6544 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6323 | |
dc.identifier.uri | https://doi.org/10.1088/1361-6544/ac24e5 | en_US |
dc.description.abstract | This paper deals with existence, uniqueness and multiplicity of positive solutions to the following nonlocal system of equations: \begin{equation*}\left\{\begin{aligned}& {(-{\Delta})}^{s}u=\frac{\alpha }{{2}_{s}^{{\ast}}}\vert u{\vert }^{\alpha -2}u\vert v{\vert }^{\beta }+f(x)\quad \text{in}\enspace {\mathbb{R}}^{N},\\ & {(-{\Delta})}^{s}v=\frac{\beta }{{2}_{s}^{{\ast}}}\vert v{\vert }^{\beta -2}v\vert u{\vert }^{\alpha }+g(x)\quad \text{in}\enspace {\mathbb{R}}^{N},\\ & u,\enspace v{ >}0\quad \text{in}\hspace{2pt}{\mathbb{R}}^{N},\end{aligned}\right.\qquad \qquad \qquad \qquad (\mathcal{S})\end{equation*} where 0 < s < 1, N > 2s, α, β > 1, α + β = 2N/(N − 2s), and f, g are nonnegative functionals in the dual space of ${\dot {H}}^{s}({\mathbb{R}}^{N})$, i.e., ${}_{{({\dot {H}}^{s})}^{\prime }}\langle f\hspace{-1pt},u{\rangle }_{{\dot {H}}^{s}}{\geqslant}0$, whenever u is a nonnegative function in ${\dot {H}}^{s}({\mathbb{R}}^{N})$. When f = 0 = g, we show that the ground state solution of $(\mathcal{S})$ is unique. On the other hand, when f and g are nontrivial nonnegative functionals with ker(f) = ker(g), then we establish the existence of at least two different positive solutions of $(\mathcal{S})$ provided that ${\Vert}f{{\Vert}}_{{({\dot {H}}^{s})}^{\prime }}$ and ${\Vert}g{{\Vert}}_{{({\dot {H}}^{s})}^{\prime }}$ are small enough. Moreover, we also provide a global compactness result, which gives a complete description of the Palais–Smale sequences of the above system. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IOP Publishing | en_US |
dc.subject | Mathematics | en_US |
dc.subject | 2021-OCT-WEEK1 | en_US |
dc.subject | TOC-OCT-2021 | en_US |
dc.subject | 2021 | en_US |
dc.title | Fractional elliptic systems with critical nonlinearities | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Nonlinearity | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.