Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6362
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBiswas, Indranilen_US
dc.contributor.authorDey, Arijiten_US
dc.contributor.authorGenc, Ozhanen_US
dc.contributor.authorPODDAR, MAINAKen_US
dc.date.accessioned2021-11-01T04:14:21Z-
dc.date.available2021-11-01T04:14:21Z-
dc.date.issued2021-10en_US
dc.identifier.citationProceedings - Mathematical Sciences, 131, 36.en_US
dc.identifier.issn0973-7685en_US
dc.identifier.urihttps://doi.org/10.1007/s12044-021-00623-wen_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6362-
dc.description.abstractLet X be a nonsingular complex projective toric variety. We address the question of semi-stability as well as stability for the tangent bundle T X. In particular, a complete answer is given when X is a Fano toric variety of dimension four with Picard number at most two, complementing the earlier work of Nakagawa (Tohoku. Math. J. 45 (1993) 297–310; 46 (1994) 125–133). We also give an infinite set of examples of Fano toric varieties for which TX is unstable; the dimensions of this collection of varieties are unbounded. Our method is based on the equivariant approach initiated by Klyachko (Izv. Akad. Nauk. SSSR Ser. Mat. 53 (1989) 1001–1039, 1135) and developed further by Perling (Math. Nachr. 263/264 (2004) 181–197) and Kool (Moduli spaces of sheaves on toric varieties, Ph.D. thesis (2010) (University of Oxford); Adv. Math. 227 (2011) 1700–1755).en_US
dc.language.isoenen_US
dc.publisherIndian Academy of Sciencesen_US
dc.subjectMathematics|2021-OCT-WEEK3en_US
dc.subjectTOC-OCT-2021en_US
dc.subject2021en_US
dc.titleOn stability of tangent bundle of toric varietiesen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleProceedings - Mathematical Sciencesen_US
dc.publication.originofpublisherIndianen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.