Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6363
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPRADHAN, SOMNATHen_US
dc.date.accessioned2021-11-01T04:14:21Z
dc.date.available2021-11-01T04:14:21Z
dc.date.issued2021-11en_US
dc.identifier.citationSystems & Control Letters, 157, 105033.en_US
dc.identifier.issn0167-6911en_US
dc.identifier.issn1872-7956en_US
dc.identifier.urihttps://doi.org/10.1016/j.sysconle.2021.105033en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6363
dc.description.abstractThis article is concerned with the infinite horizon risk-sensitive zero-sum stochastic differential game problem for a class of jump–diffusions controlled through the drift, and driven by a compensated Poisson process and a Wiener process. Under certain geometric stability assumption on the dynamics, we completely characterize all possible saddle point strategies in the class of stationary Markov strategies. We obtain our result by exploiting the stochastic representation of the principal eigenfunction of the associated Hamilton–Jacobi–Isaac (HJI) equation, which is a semilinear integro-partial differential equation.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.subjectLévy processesen_US
dc.subjectPrincipal eigenvalueen_US
dc.subjectIntegro-partial differential equationen_US
dc.subjectSaddle point equilibriaen_US
dc.subject2021-OCT-WEEK3en_US
dc.subjectTOC-OCT-2021en_US
dc.subject2021en_US
dc.titleRisk-sensitive zero-sum stochastic differential game for jump–diffusionsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleSystems & Control Lettersen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.