Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6372
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | BHIMANI, DIVYANG G. | en_US |
dc.contributor.author | Okoudjou, Kasso A. | en_US |
dc.date.accessioned | 2021-11-05T09:39:44Z | |
dc.date.available | 2021-11-05T09:39:44Z | |
dc.date.issued | 2022-01 | en_US |
dc.identifier.citation | Journal of Mathematical Analysis and Applications, 505(1), 125480. | en_US |
dc.identifier.issn | 0022-247X | en_US |
dc.identifier.issn | 1096-0813 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6372 | - |
dc.identifier.uri | https://doi.org/10.1016/j.jmaa.2021.125480 | en_US |
dc.description.abstract | Given a window φ ∈L2(R), and lattice parameters α, β>0, we introduce a bimodal Wilson system W(φ, α, β) consisting of linear combinations of at most two elements from an associated Gabor G(φ, α, β). Fo r a class of window functions φ, we show that the Gabor system G(φ, α, β)is a tight frame of redundancy β−1if and only if the Wilson system W(φ, α, β)is Parseval system for L2(R). Examples of smooth rapidly decaying generators φare constructed. In addition, when 3 ≤β−1∈N, we prove that it is impossible to renormalize the elements of the constructed Parseval Wilson frame so as to get a well-localized orthonormal basis for L2(R). | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier B.V. | en_US |
dc.subject | Frame | en_US |
dc.subject | Gabor system | en_US |
dc.subject | Orthonormal basis | en_US |
dc.subject | Wilson system | en_US |
dc.subject | 2021-NOV-WEEK1 | en_US |
dc.subject | TOC-NOV-2021 | en_US |
dc.subject | 2022 | en_US |
dc.title | Bimodal Wilson systems in L-2(R) | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Journal of Mathematical Analysis and Applications | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.