Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6372
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBHIMANI, DIVYANG G.en_US
dc.contributor.authorOkoudjou, Kasso A.en_US
dc.date.accessioned2021-11-05T09:39:44Z
dc.date.available2021-11-05T09:39:44Z
dc.date.issued2022-01en_US
dc.identifier.citationJournal of Mathematical Analysis and Applications, 505(1), 125480.en_US
dc.identifier.issn0022-247Xen_US
dc.identifier.issn1096-0813en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6372-
dc.identifier.urihttps://doi.org/10.1016/j.jmaa.2021.125480en_US
dc.description.abstractGiven a window φ ∈L2(R), and lattice parameters α, β>0, we introduce a bimodal Wilson system W(φ, α, β) consisting of linear combinations of at most two elements from an associated Gabor G(φ, α, β). Fo r a class of window functions φ, we show that the Gabor system G(φ, α, β)is a tight frame of redundancy β−1if and only if the Wilson system W(φ, α, β)is Parseval system for L2(R). Examples of smooth rapidly decaying generators φare constructed. In addition, when 3 ≤β−1∈N, we prove that it is impossible to renormalize the elements of the constructed Parseval Wilson frame so as to get a well-localized orthonormal basis for L2(R).en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.subjectFrameen_US
dc.subjectGabor systemen_US
dc.subjectOrthonormal basisen_US
dc.subjectWilson systemen_US
dc.subject2021-NOV-WEEK1en_US
dc.subjectTOC-NOV-2021en_US
dc.subject2022en_US
dc.titleBimodal Wilson systems in L-2(R)en_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleJournal of Mathematical Analysis and Applicationsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.