Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6390
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorKumar, Bipinen_US
dc.contributor.advisorChattopadhyay, Rajiben_US
dc.contributor.authorABHISHEK, NAMITen_US
dc.date.accessioned2021-11-25T03:41:39Z-
dc.date.available2021-11-25T03:41:39Z-
dc.date.issued2021-08en_US
dc.identifier.citation50en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6390-
dc.description.abstractIn this work, we use convolutional recurrent neural network-based architectures involving ConvLSTM and ConvGRU for precipitation forecasting over the Indian region. We first compare direct and iterative approach for forecasting and find the iterative approach better for our model. We use multiple variables such as specific humidity, orography, soil moisture and surface pressure as input features for better capturing the underlying dynamics. We also analyse the forecasts over different homogeneous rainfall regions. Finally, we compare ConvLSTM and ConvGRU based models. We find similar performance in both the models, ConvGRU being faster.en_US
dc.language.isoenen_US
dc.subjectMachine learningen_US
dc.subjectConvolutional Recurrent Neural Networksen_US
dc.subjectMedium Range Precipitation Forecastingen_US
dc.subjectSpatiotemporal Forecastingen_US
dc.subjectDeep Learningen_US
dc.titleApplication of Convolutional Recurrent Neural Network in Precipitation Forecastingen_US
dc.typeThesisen_US
dc.type.degreeBS-MSen_US
dc.contributor.departmentDept. of Data Scienceen_US
dc.contributor.registration20161023en_US
Appears in Collections:MS THESES

Files in This Item:
File Description SizeFormat 
Thesis_20161023.pdf5.37 MBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.