Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6410
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKadu, Ganesh S.en_US
dc.contributor.authorJoshi, Vinayaken_US
dc.contributor.authorGONDE, SAMRUDDHAen_US
dc.date.accessioned2021-11-29T10:52:27Z
dc.date.available2021-11-29T10:52:27Z
dc.date.issued2021-12en_US
dc.identifier.citationBulletin of the Australian Mathematical Society, 104(3), 362-372.en_US
dc.identifier.issn0004-9727en_US
dc.identifier.issn1755-1633en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6410-
dc.identifier.urihttps://doi.org/10.1017/S0004972721000265en_US
dc.description.abstractWe prove that the annihilating-ideal graph of a commutative semigroup with unity is, in general, not weakly perfect. This settles the conjecture of DeMeyer and Schneider [‘The annihilating-ideal graph of commutative semigroups’, J. Algebra 469 (2017), 402–420]. Further, we prove that the zero-divisor graphs of semigroups with respect to semiprime ideals are weakly perfect. This enables us to produce a large class of examples of weakly perfect zero-divisor graphs from a fixed semigroup by choosing different semiprime ideals.en_US
dc.language.isoenen_US
dc.publisherCambridge University Pressen_US
dc.subjectAnnihilating-ideal graphen_US
dc.subjectSemigroupen_US
dc.subjectSemiprime idealen_US
dc.subjectWeakly perfect graphen_US
dc.subjectZero-divisor graphen_US
dc.subject2021-NOV-WEEK4en_US
dc.subjectTOC-NOV-2021en_US
dc.subject2021en_US
dc.titleOn Weakly Perfect Annihilating-Ideal Graphsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleBulletin of the Australian Mathematical Societyen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.