Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6471
Title: Stability and electronic properties of the graphene-supported FeO nanostructures including clusters and monolayer
Authors: BANO, AMREEN
Patra, Lokanath
Pandey, Ravindra
Dept. of Physics
Keywords: Graphene
FeO clusters
FeO monolayer
2D heterostructure
Density functional theory
2021-DEC-WEEK3
TOC-DEC-2021
2021
Issue Date: Dec-2021
Publisher: Elsevier B.V.
Citation: Applied Surface Science, 569, 150976.
Abstract: Integration of graphene with subnano clusters or monolayer of FeO can facilitate the formation of nanostructures with applications in magnetic storage or health-related areas. In this paper, first-principles calculations are performed to investigate the stability and electronic properties of such supported nanostructures. The results show that a noticeable hybridization occurs between Fe and C atoms at the interface that provide stability to both the clusters and monolayer on graphene. The substrate-induced changes in the electronic properties of the (FeO) clusters are small since the clusters appeared to be weakly adsorbed on the surface. However, this is not the case with FeO(111) monolayer for which a buckled configuration is predicted to be energetically preferred on graphene. Subsequently, graphene-supported FeO(111) monolayer exhibits half-metallicity with ferrimagnetic alignment of the magnetic moments in the lattice with finite total magnetic moment. The interface bonding, therefore, appears to define the characteristics of graphene-supported FeO(111) monolayer, though it makes small but noticeable changes in the graphene-supported (FeO) clusters.
URI: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6471
https://doi.org/10.1016/j.apsusc.2021.150976
ISSN: 0169-4332
1873-5584
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.