Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/647
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorKALELKAR, TEJASen_US
dc.contributor.authorSAFEER, K Men_US
dc.date.accessioned2016-05-06T12:22:24Z
dc.date.available2016-05-06T12:22:24Z
dc.date.issued2016-05en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/647-
dc.description.abstractIn this reading project I studied some interesting results in Riemannian geometry. Starting from the definition of Riemannian metric, geodesics and curvature this thesis covers deep results such as Gauss-Bonnet theorem, Cartan-Hadamard theorem, Hopf-Rinow theorem and the Morse index theorem. Along the way it introduces useful tools such as Jacobi fields, variation formulae, cut locus etc. It finally builds up to the proof of the celebrated Sphere theorem using some basic Morse theory.en_US
dc.language.isoenen_US
dc.subject2016
dc.subjectRiemannian Geometryen_US
dc.subjectGeometryen_US
dc.subjectTopologyen_US
dc.subjectSphere theoremen_US
dc.subjectRauch Comparison Theoremen_US
dc.subjectMorse Index Theoremen_US
dc.titleA Study of Riemannian Geometryen_US
dc.typeThesisen_US
dc.type.degreeBS-MSen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.contributor.registration20111054en_US
Appears in Collections:MS THESES

Files in This Item:
File Description SizeFormat 
thesis_finale_safeer.pdfMS Thesis919.57 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.