Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6526
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKulshrestha, Amiten_US
dc.contributor.authorKUNDU, RIJUBRATAen_US
dc.contributor.authorSINGH, ANUPAM KUMARen_US
dc.date.accessioned2022-01-13T06:23:04Z
dc.date.available2022-01-13T06:23:04Z
dc.date.issued2021-09en_US
dc.identifier.citationJournal of Group Theory.en_US
dc.identifier.issn1433-5883en_US
dc.identifier.issn1435-4446en_US
dc.identifier.urihttps://doi.org/10.1515/jgth-2020-0206en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6526
dc.description.abstractLet 𝐺 be a connected reductive group defined over Fq. Fix an integer M≥2, and consider the power map x↦xM on 𝐺. We denote the image of G(Fq) under this map by G(Fq)M and estimate what proportion of regular semisimple, semisimple and regular elements of G(Fq) it contains. We prove that, as q→∞, the set of limits for each of these proportions is the same and provide a formula. This generalizes the well-known results for M=1 where all the limits take the same value 1. We also compute this more explicitly for the groups GL(n,q) and U(n,q) and show that the set of limits are the same for these two group, in fact, in bijection under q↦−q for a fixed 𝑀.en_US
dc.language.isoenen_US
dc.publisherDe Gruyteren_US
dc.subjectMathematicsen_US
dc.subject2022-JAN-WEEK2en_US
dc.subject2021en_US
dc.titleAsymptotics of the powers in finite reductive groupsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleJournal of Group Theoryen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.