Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6540
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBHIMANI, DIVYANG G.en_US
dc.contributor.authorHaque, Saikatulen_US
dc.date.accessioned2022-01-24T06:34:47Z
dc.date.available2022-01-24T06:34:47Z
dc.date.issued2021-12en_US
dc.identifier.citationMathematics, 9(23), 3145.en_US
dc.identifier.issn2227-7390en_US
dc.identifier.urihttps://doi.org/10.3390/math9233145en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6540
dc.description.abstractWe consider the Benjamin–Bona–Mahony (BBM) equation of the form ut ` ux ` uux ´ uxxt “ 0,px, tq P M ˆ R where M “ T or R. We establish norm inflation (NI) with infinite loss of regularity at general initial data in Fourier amalgam and Wiener amalgam spaces with negative regularity. This strengthens several known NI results at zero initial data in Hs pTq established by Bona– Dai (2017) and the ill-posedness result established by Bona–Tzvetkov (2008) and Panthee (2011) in Hs pRq. Our result is sharp with respect to the local well-posedness result of Banquet–Villamizar–Roa (2021) in modulation spaces M2,1 s pRq for s ě 0en_US
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.subjectBBM equationen_US
dc.subjectIll-posednessen_US
dc.subjectFourier amalgam spacesen_US
dc.subjectWiener amalgam spacesen_US
dc.subjectFourier-Lebesgue spacesen_US
dc.subjectModulation spacesen_US
dc.subject2022-JAN-WEEK4en_US
dc.subjectTOC-JAN-2022en_US
dc.subject2021en_US
dc.titleNorm Inflation for Benjamin–Bona–Mahony Equation in Fourier Amalgam and Wiener Amalgam Spaces with Negative Regularityen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleMathematicsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.