Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6615
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDESHMUKH, NEERAJen_US
dc.contributor.authorHOGADI, AMITen_US
dc.contributor.authorMathur, Siddharthen_US
dc.date.accessioned2022-03-04T04:25:22Z
dc.date.available2022-03-04T04:25:22Z
dc.date.issued2022-02en_US
dc.identifier.citationInternational Mathematics Research Notices, 2022(3),2224–2249.en_US
dc.identifier.issn1687-0247en_US
dc.identifier.issn1073-7928en_US
dc.identifier.urihttps://doi.org/10.1093/imrn/rnaa125en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6615
dc.description.abstractWe prove that, under mild hypothesis, every normal algebraic space that satisfies the 1-resolution property is quasi-affine. More generally, we show that for algebraic stacks satisfying similar hypotheses, the 1-resolution property guarantees the existence of a finite flat cover by a quasi-affine scheme.en_US
dc.language.isoenen_US
dc.publisherOxford University Pressen_US
dc.subjectMathematicsen_US
dc.subject2022-MAR-WEEK1en_US
dc.subjectTOC-MAR-2022en_US
dc.subject2022en_US
dc.titleQuasi-Affineness and the 1-Resolution Propertyen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleInternational Mathematics Research Noticesen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.