Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6622
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBORAH, DIGANTAen_US
dc.contributor.authorKAR, DEBAPRASANNAen_US
dc.date.accessioned2022-03-14T03:49:04Z-
dc.date.available2022-03-14T03:49:04Z-
dc.date.issued2021-12en_US
dc.identifier.citation65en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6622-
dc.description.abstractWe will compute the boundary asymptotics of the Carathéodory and Kobayashi-Eisenman vol- ume elements on convex finite type domains and Levi corank one domains in C n using the standard scaling techniques. We will show that their ratio, the so-called C/K ratio or the quotient invariant, can be used to detect strong pseudoconvexity. Some properties of a Kähler metric called the Kobayashi–Fuks metric will also be observed on planar domains as well as on strongly pseudoconvex domains in C^n . We study the localization of this metric near holomor- phic peak points and show that this metric shares several properties with the classical Bergman metric on strongly pseudoconvex domains.en_US
dc.description.sponsorshipCouncil of Scientific & Industrial Research, File no. 09/936(0221)/2019-EMR-Ien_US
dc.language.isoenen_US
dc.subjectCarathéodory and Kobayashi-Eisenman volume elementsen_US
dc.subjectBergman Kernelen_US
dc.subjectKobayashi--Fuks metircen_US
dc.titleBoundary behavior of the Carathéodory and Kobayashi-Eisenman volume elements and the Kobayashi–Fuks metricen_US
dc.typeThesisen_US
dc.publisher.departmentDept. of Mathematicsen_US
dc.type.degreeInt.Ph.Den_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.contributor.registration20152032en_US
Appears in Collections:PhD THESES

Files in This Item:
File Description SizeFormat 
20152032_Debaprasanna_Kar.pdfPh.D Thesis735.03 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.