Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6654
Title: Growth of highly conducting MoS2-xNx thin films with enhanced 1T' phase by pulsed laser deposition and exploration of their nanogenerator application
Authors: PARMAR, SWATI
PRAJESH, NEETU
WABLE, MINAL
Choudhary, Ram Janay
Gosavi, Suresh
BOOMISHANKAR, RAMAMOORTHY
OGALE, SATISHCHANDRA
Dept. of Chemistry
Dept. of Physics
Keywords: Materials science
Materials synthesis
Nanomaterials
2022-MAR-WEEK3
TOC-MAR-2022
2022
Issue Date: Mar-2022
Publisher: Elsevier B.V.
Citation: iScience, 25(3), 103898
Abstract: High-quality growth of MoS2-xNx films is realized on single-crystal c-Al2O3 substrates by the pulsed laser deposition (PLD) in ammonia rendering highly stable and tunable 1Tʹ/2H biphasic constitution. Raman spectroscopy reveals systematic enhancement of 1Tʹ phase component due to the incorporation of covalently bonded N-doping in MoS2 lattice, inducing compressive strain. Interestingly, the film deposited at 300 mTorr NH3 shows ∼80% 1Tʹ phase. The transport measurements performed on MoS2-xNx films deposited at 300 mTorr NH3 display very low room temperature resistivity of 0.03 mΩ-cm which is 100 times enhanced over the undoped MoS2 grown under comparable conditions. A triboelectric nanogenerator (TENG) device containing biphasic MoS2-xNx film as an electron acceptor exhibits a clear enhancement in the output voltage as compared to the pristine MoS2. Device architecture, p-type N doping in MoS2 lattice, favorably increased work-function, multiphasic component of MoS2, and increased surface roughness synergistically contribute to superior TENG performance.
URI: https://doi.org/10.1016/j.isci.2022.103898
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6654
ISSN: 2589-0042
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.