Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6681
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Huyuanen_US
dc.contributor.authorBHAKTA, MOUSOMIen_US
dc.contributor.authorHajaiej, Hichemen_US
dc.date.accessioned2022-03-30T10:13:28Z
dc.date.available2022-03-30T10:13:28Z
dc.date.issued2022-04en_US
dc.identifier.citationJournal of Differential Equations, 317, 1-31.en_US
dc.identifier.issn0022-0396en_US
dc.identifier.issn1090-2732en_US
dc.identifier.urihttps://doi.org/10.1016/j.jde.2022.02.004en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6681
dc.description.abstractOur purpose in this paper is to study of the eigenvalues {lambda(i)(mu)}(i) of the Dirichlet problem (-Delta)(s1)u=lambda((-Delta)(s2)u + mu u) in Omega, u = 0 in R-N \ Omega, where 0 < s(2) < s(1) < 1, N 2(s1) and (-Delta)(s) is the fractional Laplacian operator defined in the principle value sense. We first show the existence of a sequence of eigenvalues, which approaches infinity. Secondly we provide a Berezin-Li-Yau type lower bound for the sum of the eigenvalues of the above problem. Furthermore, using a self-contained and novel method, we establish an upper bound for the sum of eigenvalues of the problem under study. (c) 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.subjectDirichlet eigenvaluesen_US
dc.subjectFractional Laplacianen_US
dc.subjectBerezin-Li-Yau methoden_US
dc.subjectMixed nonlocal operatoren_US
dc.subjectMixed fractional Laplacianen_US
dc.subject2022-MAR-WEEK3en_US
dc.subjectTOC-MAR-2022en_US
dc.subject2022en_US
dc.titleOn the bounds of the sum of eigenvalues for a Dirichlet problem involving mixed fractional Laplaciansen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleJournal of Differential Equationsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.