Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6697
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSRINIVASAN, ADARSH-
dc.contributor.authorNarayanaswamy, N. S.-
dc.contributor.editorMudgal, Apurva-
dc.contributor.editorSubramanian, C. R.-
dc.date.accessioned2022-04-04T05:54:22Z-
dc.date.available2022-04-04T05:54:22Z-
dc.date.issued2021-01-
dc.identifier.citationCALDAM 2021: Algorithms and Discrete Applied Mathematics pp 247–258.en_US
dc.identifier.other7th International Conference, CALDAM 2021, Rupnagar, India, February 11–13, 2021, Proceedingsen_US
dc.identifier.urihttps://link.springer.com/chapter/10.1007/978-3-030-67899-9_19en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6697-
dc.description.abstractClosed form expressions for the domination number of an n×m grid have attracted significant attention, and an exact expression has been obtained in 2011 [7]. In this paper, we present our results on obtaining new lower bounds on the connected domination number of an n×m grid. The problem has been solved for grids with up to 4 rows and with 6 rows and the best currently known lower bound for arbitrary m, n is [11]. Fujie [4] came up with a general construction for a connected dominating set of an n×m grid. In this paper, we investigate whether this construction is indeed optimum. We prove a new lower bound of for arbitrary m,n≥4.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectConnected dominating seten_US
dc.subjectMaximum leaf spanning treeen_US
dc.subjectGrid graphen_US
dc.subjectConnected domination numberen_US
dc.subject2021en_US
dc.titleThe Connected Domination Number of Gridsen_US
dc.typeBook chapteren_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.title.bookCALDAM 2021: Algorithms and Discrete Applied Mathematics.en_US
dc.identifier.doihttps://doi.org/10.1007/978-3-030-67899-9_19en_US
dc.identifier.sourcetitleCALDAM 2021: Algorithms and Discrete Applied Mathematicsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:BOOK CHAPTERS

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.