Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6712
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBecher, Karim Johannesen_US
dc.contributor.authorGUPTA, PARULen_US
dc.date.accessioned2022-04-04T08:56:45Z-
dc.date.available2022-04-04T08:56:45Z-
dc.date.issued2021-10en_US
dc.identifier.citationJournal of Number Theory.en_US
dc.identifier.issn0022-314Xen_US
dc.identifier.urihttps://doi.org/10.1016/j.jnt.2021.09.005en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6712-
dc.description.abstractFor a field E of characteristic different from 2 and cohomological 2-dimension one, quadratic forms over the rational function field are studied. A characterisation in terms of polynomials in is obtained for having that quadratic forms over satisfy a local-global principle with respect to discrete valuations that are trivial on E. In this way new elementary proofs for the local-global principle are achieved in the cases where E is finite or pseudo-algebraically closed. The study is complemented by various examples.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.subjectQuadratic formen_US
dc.subjectIsotropyen_US
dc.subjectRational function fielden_US
dc.subjectValuationen_US
dc.subjectLocal-global-principleen_US
dc.subjectu-invarianten_US
dc.subjectFinite fielden_US
dc.subjectPseudo-algebraically closed fielden_US
dc.subjectMilnor K-theoryen_US
dc.subjectRamification sequenceen_US
dc.subjectSymbolen_US
dc.subjectCommon sloten_US
dc.subjectStrong linkageen_US
dc.subjectTransferen_US
dc.subjectHyperelliptic curveen_US
dc.subject2021en_US
dc.titleSquare-reflexive polynomialsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleJournal of Number Theoryen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.