Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6728
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRAGHURAM, A.en_US
dc.date.accessioned2022-04-07T03:46:06Z-
dc.date.available2022-04-07T03:46:06Z-
dc.date.issued2021-02en_US
dc.identifier.citationInternational Mathematics Research Noticesen_US
dc.identifier.issn1073-7928en_US
dc.identifier.issn1687-0247en_US
dc.identifier.urihttps://doi.org/10.1093/imrn/rnaa383en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6728-
dc.description.abstractWe prove a Galois-equivariant algebraicity result for the ratios of successive critical values of L-functions for GL(n)/F, where F is a totally imaginary quadratic extension of a totally real number field F+. The proof uses (1) results of Arthur and Clozel on automorphic induction from GL(n)/F to GL(2n)/F+, (2) results of my work with Harder on ratios of critical values for L-functions of GL(2n)/F+, and (3) period relations amongst various automorphic and cohomological periods for GL(2n)/F+ using my work with Shahidi. The reciprocity law inherent in the algebraicity result is exactly as predicted by Deligne's conjecture on the special values of motivic L-functions.en_US
dc.language.isoenen_US
dc.publisherOxford University Pressen_US
dc.subjectEisenstein Cohomologyen_US
dc.subjectRationalityen_US
dc.subject2021en_US
dc.titleSpecial Values of L-functions for GL(n) Over a CM Fielden_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleInternational Mathematics Research Noticesen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.