Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6733
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorMAITY, SOUMENen_US
dc.contributor.authorMALLYA, VAIKUNTen_US
dc.date.accessioned2022-04-18T09:09:37Z-
dc.date.available2022-04-18T09:09:37Z-
dc.date.issued2022-04-
dc.identifier.citation63en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6733-
dc.description.abstractThe fixed parameter approach to a problem is a technique of designing an algorithm to solve combinatorially hard problems. A parameterized problem has an input instance x as well as a parameter k which is sufficiently small compared to the input size of the instance. A parameterized problem is FPT (fixed parameter tractable) if there exists an algorithm which correctly decides whether the input instance of the given problem is a yes or no instance in f(k).|x|^O(1) time where f is some computable function. Similarly, if the algorithm requires f(k).|x|^g(k) time then it is called XP (here f and g are computable functions). In this project, we study paramaterized complexity, kernelization techniques, branching algorithms and treewidth.en_US
dc.language.isoenen_US
dc.subjectAlgorithmsen_US
dc.subjectGraph Theoryen_US
dc.subjectParameterized Algorithmsen_US
dc.subjectNP-Hard Problemen_US
dc.subjectKernelizationen_US
dc.subjectParameterized Complexityen_US
dc.subjectTreewidthen_US
dc.subjectSearch Treesen_US
dc.titleParameterized Algorithms for Graph Problemsen_US
dc.typeThesisen_US
dc.type.degreeBS-MSen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.contributor.registration20151189en_US
Appears in Collections:MS THESES

Files in This Item:
File Description SizeFormat 
Signed Thesis.pdfFinal Thesis Document.1.26 MBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.