Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6746
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKannan, M. Rajeshen_US
dc.contributor.authorPragada, Shivaramakrishnaen_US
dc.contributor.authorWANKHEDE, HITESHen_US
dc.date.accessioned2022-04-22T08:11:56Z
dc.date.available2022-04-22T08:11:56Z
dc.date.issued2022-08en_US
dc.identifier.citationDiscrete Mathematics, 348(8), 112916.en_US
dc.identifier.issn0012-365Xen_US
dc.identifier.urihttps://doi.org/10.1016/j.disc.2022.112916en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6746
dc.description.abstractIn this article, we construct bipartite graphs which are cospectral for both the adjacency and normalized Laplacian matrices using the notion of partitioned tensor products. This extends the construction of Ji, Gong, and Wang [9]. Our proof of the cospectrality of adjacency matrices simplifies the proof of the bipartite case of Godsil and McKay's construction [4], and shows that the corresponding normalized Laplacian matrices are also cospectral. We partially characterize the isomorphism in Godsil and McKay's construction, and generalize Ji et al.'s characterization of the isomorphism to biregular bipartite graphs. The essential idea in characterizing the isomorphism uses Hammack's cancellation law as opposed to Hall's marriage theorem used by Ji et al.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.subjectAdjacency matrixen_US
dc.subjectNormalized Laplacian matrixen_US
dc.subjectCospectral bipartite graphsen_US
dc.subjectHammack's cancellation lawen_US
dc.subjectPartitioned tensor producten_US
dc.subject2022-APR-WEEK2en_US
dc.subjectTOC-APR-2022en_US
dc.subject2022en_US
dc.titleOn the construction of cospectral nonisomorphic bipartite graphsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleDiscrete Mathematicsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.