Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6846
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorCao, Ricardoen_US
dc.contributor.advisorM. Vilar, Juanen_US
dc.contributor.authorBHARADWAJ, SHRUTHI RAVINDRAen_US
dc.date.accessioned2022-05-11T10:02:24Z-
dc.date.available2022-05-11T10:02:24Z-
dc.date.issued2022-05-
dc.identifier.citation152en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6846-
dc.description.abstractIn survival analysis, it may happen that some subjects in the study never experience the event of interest and are hence, considered to be cured. In credit data, cured individuals are the loans that never get defaulted. One of the common models to study such cured survival data are the mixture cure models which assume that the population of interest consists of two sub-populations, the cured sub-population and the uncured one. These models are comprised of two components, the incidence, which models the probability of cure of an individual, and the latency, which models the survival distribution for uncured sub-population. Often, one is interested in the cure status of an individual. For example, in credit data, a useful question is whether a loan would default or not default. We propose a classifier for this prediction using the estimator for the probability of cure. To evaluate the predictive performance of this classifier, we use the receiver operating characteristic (ROC) curves. But as the cure status of a subject is usually unknown, we discuss the modification of the ROC curves estimators to consider the latent cured status. Finally, we illustrate this methodology on two credit data sets, the German credit data and the Bondora credit data, and compare different parametric approaches with the semi-parametric approach of the single-index model for the incidence and the Cox proportional hazards model for the latency. We also discuss the concept of effects of covariates on the model, and propose two methodologies of significance tests for the single-index Cox proportional hazards mixture cure model.en_US
dc.language.isoenen_US
dc.subjectStatisticsen_US
dc.subjectSurvival analysisen_US
dc.subjectCredit risken_US
dc.titleDefault Status Prediction in Credit Data using Mixture Cure Modelsen_US
dc.typeThesisen_US
dc.type.degreeBS-MSen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.contributor.registration20171082en_US
Appears in Collections:MS THESES

Files in This Item:
File Description SizeFormat 
Shruthi Ravindra Bharadwaj (MS thesis).pdf1.56 MBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.