Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6918
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSPALLONE, STEVENen_US
dc.contributor.authorJAIN, YASHIen_US
dc.date.accessioned2022-05-13T07:43:36Z-
dc.date.available2022-05-13T07:43:36Z-
dc.date.issued2022-05-
dc.identifier.citation71en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6918-
dc.description.abstractIn the first course in ring theory, we learn about primes and irreducible elements. An easy proof tells us that if an element is prime then it is irreducible. It is, therefore, very natural to ask the question “How many irreducibles are prime?” During the course of this thesis, we’ll be working with Number rings and would devise a way to quantify primes and irreducibles and seek an answer to this problem.en_US
dc.language.isoenen_US
dc.subjectAlgebraic Number Theoryen_US
dc.titleHow many irreducibles are prime?en_US
dc.typeThesisen_US
dc.type.degreeBS-MSen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.contributor.registration20171019en_US
Appears in Collections:MS THESES

Files in This Item:
File Description SizeFormat 
Thesis (21) (1).pdfThesis1.04 MBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.