Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6931
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorMALLICK, VIVEK MOHANen_US
dc.contributor.authorOUSEPH, CHRISILen_US
dc.date.accessioned2022-05-13T10:25:39Z
dc.date.available2022-05-13T10:25:39Z
dc.date.issued2022-05
dc.identifier.citation65en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6931
dc.description.abstractThis thesis aims to serve as an excursion into the theories of homology, cohomology and characteristic classes, conventional tools used to study topological spaces and vector bundles with origins in Algebraic Topology. Important definitions and results like the Excision theorem, Mayer-Vietoris sequences, the Universal Coefficient Theorem, Künneth formulae and Poincaré Duality are presented. The Stiefel-Whitney class and the Euler class are introduced and their properties discussed. Meanwhile, the obstructions they pose to the existence of sections and orientability are also mentioned. The thesis concludes with an application of the tools acquired to the computation of the equivariant cohomology and Stiefel-Whitney classes of a chosen space under a particular group action.en_US
dc.language.isoenen_US
dc.subjectAlgebraic Topologyen_US
dc.subjectHomologyen_US
dc.subjectCohomologyen_US
dc.subjectVector Bundlesen_US
dc.subjectEquivariant Cohomologyen_US
dc.subjectOrientationen_US
dc.subjectMathematicsen_US
dc.subjectTopologyen_US
dc.subjectCharacteristic Classen_US
dc.subjectStiefel-Whitney Classen_US
dc.subjectEquivariant Stiefel-Whitney Classen_US
dc.subjectEuler Classen_US
dc.titleAlgebraic Topology and Obstruction Theoryen_US
dc.typeThesisen_US
dc.type.degreeBS-MSen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.contributor.registration20171137en_US
Appears in Collections:MS THESES

Files in This Item:
File Description SizeFormat 
Thesis_Chrisil_20171137.pdfMain thesis728.14 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.