Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6987
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBISWAS, ANUPen_US
dc.contributor.authorHoang-Hung Voen_US
dc.date.accessioned2022-05-23T10:39:23Z
dc.date.available2022-05-23T10:39:23Z
dc.date.issued2022-08en_US
dc.identifier.citationCalculus of Variations and Partial Differential Equations, 61(4), 122.en_US
dc.identifier.issn0944-2669en_US
dc.identifier.issn1432-0835en_US
dc.identifier.urihttps://doi.org/10.1007/s00526-022-02227-2en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6987
dc.description.abstractUnder the lack of variational structure and nondegeneracy, we investigate three notions of generalized principal eigenvalue for a general infinity Laplacian operator with gradient and homogeneous term. A Harnack inequality is proved to support our analysis. This is a continuation of our first work (Biswas and Vo in Liouville theorems for infinity Laplacian with gradient and KPP type equation. Ann. Sc. Norm. Super. Pisa Cl. Sci. https://doi.org/10.2422/2036-2145.202105_050) and a contribution in the development of the theory of generalized principal eigenvalue beside the works (Berestycki et al. in Commun Pure Appl Math 47(1):47–92, 1994; Berestycki and Rossi in JEMS 8:195–215, 2006; Berestycki and Rossi in Commun Pure Appl Math 68(6):1014–1065, 2015; Berestycki et al. in J Math Pures Appl 103:1276–1293, 2015; Nguyen and Vo in Calc Var Partial Differ Equ 58(3):102 2019). We use these notions to characterize the validity of maximum principle and study the existence, nonexistence and uniqueness of positive solutions of Fisher-KPP type equations in the whole space. The sliding method is intrinsically improved for infinity Laplacian to solve the problem. The results are related to the Liouville type results, which will be meticulously explained.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectElliptic-operatorsen_US
dc.subjectPositive solutionsen_US
dc.subjectMaximum principleen_US
dc.subjectEigenvalueen_US
dc.subjectExistenceen_US
dc.subjectEquationsen_US
dc.subject2022-MAY-WEEK3en_US
dc.subjectTOC-MAY2022en_US
dc.subject2022en_US
dc.titleHarnack inequality and principal eigentheory for general infinity Laplacian operators with gradient in RN and applicationsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleCalculus of Variations and Partial Differential Equationsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.