Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6988
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBerchio, Elviseen_US
dc.contributor.authorGanguly, Debdipen_US
dc.contributor.authorROYCHOWDHURY, PRASUNen_US
dc.date.accessioned2022-05-23T10:39:23Z
dc.date.available2022-05-23T10:39:23Z
dc.date.issued2022-08en_US
dc.identifier.citationCalculus of Variations and Partial Differential Equations, 61(4), 130.en_US
dc.identifier.issn0944-2669en_US
dc.identifier.issn1432-0835en_US
dc.identifier.urihttps://doi.org/10.1007/s00526-022-02232-5en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/6988
dc.description.abstractWe prove a family of Hardy–Rellich and Poincaré identities and inequalities on the hyperbolic space having, as particular cases, improved Hardy-Rellich, Rellich and second order Poincaré inequalities. All remainder terms provided improve those already known in literature, and all identities hold with same constants for radial operators also. Furthermore, as applications of the main results, second order versions of the uncertainty principle on the hyperbolic space are derived.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectRiemannian-manifoldsen_US
dc.subjectInequalitiesen_US
dc.subject2022-MAY-WEEK3en_US
dc.subjectTOC-MAY2022en_US
dc.subject2022en_US
dc.titleHardy–Rellich and second order Poincaré identities on the hyperbolic space via Bessel pairsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleCalculus of Variations and Partial Differential Equationsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.