Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7030
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCMS Collaborationen_US
dc.contributor.authorSirunyan, A. M.en_US
dc.contributor.authorDUBE, SOURABHen_US
dc.contributor.authorKANSAL, B.en_US
dc.contributor.authorKAPOOR, A.en_US
dc.contributor.authorKOTHEKAR, K.en_US
dc.contributor.authorPANDEY, S.en_US
dc.contributor.authorRANE, A.en_US
dc.contributor.authorRASTOGI, A.en_US
dc.contributor.authorSHARMA, SEEMA et al.en_US
dc.date.accessioned2022-06-13T04:29:00Z-
dc.date.available2022-06-13T04:29:00Z-
dc.date.issued2020-10en_US
dc.identifier.citationComputing and Software for Big Science, 4, 10.en_US
dc.identifier.issn2510-2044en_US
dc.identifier.urihttps://doi.org/10.1007/s41781-020-00041-zen_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7030-
dc.description.abstractWe describe a method to obtain point and dispersion estimates for the energies of jets arising from b quarks produced in proton–proton collisions at an energy of s√=13TeV at the CERN LHC. The algorithm is trained on a large sample of simulated b jets and validated on data recorded by the CMS detector in 2017 corresponding to an integrated luminosity of 41 fb−1. A multivariate regression algorithm based on a deep feed-forward neural network employs jet composition and shape information, and the properties of reconstructed secondary vertices associated with the jet. The results of the algorithm are used to improve the sensitivity of analyses that make use of b jets in the final state, such as the observation of Higgs boson decay to bb¯.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectCMSen_US
dc.subjectb jetsen_US
dc.subjectHiggs bosonen_US
dc.subjectJet energyen_US
dc.subjectJet resolutionen_US
dc.subjectDeep learningen_US
dc.subject2020en_US
dc.titleA Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolutionen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Physicsen_US
dc.identifier.sourcetitleComputing and Software for Big Scienceen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.