Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7034
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBISWAS, ANUPen_US
dc.contributor.authorMODASIYA, MITESHen_US
dc.date.accessioned2022-06-13T04:29:00Z
dc.date.available2022-06-13T04:29:00Z
dc.date.issued2022-01en_US
dc.identifier.citationNonlinear Analysis, 214, 112599.en_US
dc.identifier.issn0362-546Xen_US
dc.identifier.urihttps://doi.org/10.1016/j.na.2021.112599en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7034
dc.description.abstractWe study a class of nonlocal reaction–diffusion equations with a harvesting term where the nonlocal operator is given by a Bernstein function of the Laplacian. In particular, it includes the fractional Laplacian, fractional relativistic operators, sum of fractional Laplacians of different order etc. We study the existence, uniqueness and multiplicity results of the solutions to the steady state equation. We also consider the parabolic counterpart and establish the long time asymptotic of the solutions. Our proof techniques rely on both analytic and probabilistic arguments.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.subjectBernstein functions of the Laplacianen_US
dc.subjectNonlocal semipositone problemsen_US
dc.subjectLong time behavioren_US
dc.subjectNonlocal Fisher–KPPen_US
dc.subjectBifurcationen_US
dc.subjectVariable order nonlocal kernelen_US
dc.subject2022en_US
dc.titleA study of nonlocal spatially heterogeneous logistic equation with harvestingen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleNonlinear Analysisen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.