Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7087
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBISWAS, ANUPen_US
dc.contributor.authorROYCHOWDHURY, PRASUNen_US
dc.date.accessioned2022-06-16T04:17:46Z
dc.date.available2022-06-16T04:17:46Z
dc.date.issued2022-10en_US
dc.identifier.citationAdvances in Calculus of Variations, 15(4).en_US
dc.identifier.issn1864-8266en_US
dc.identifier.urihttps://doi.org/10.1515/acv-2020-0035en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7087
dc.description.abstractWe study the generalized eigenvalue problem in R N for a general convex nonlinear elliptic operator which is locally elliptic and positively 1-homogeneous. Generalizing [H. Berestycki and L. Rossi, Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains, Comm. Pure Appl. Math. 68 2015, 6, 1014–1065], we consider three different notions of generalized eigenvalues and compare them. We also discuss the maximum principles and uniqueness of principal eigenfunctions.en_US
dc.language.isoenen_US
dc.publisherDe Gruyteren_US
dc.subjectFully nonlinear operatorsen_US
dc.subjectPrincipal eigenvalueen_US
dc.subjectDirichlet problemen_US
dc.subjectHalf-eigenvaluesen_US
dc.subjectUniquenessen_US
dc.subject2022en_US
dc.titleGeneralized principal eigenvalues of convex nonlinear elliptic operators in ℝNen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleAdvances in Calculus of Variationsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.