Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7087
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | BISWAS, ANUP | en_US |
dc.contributor.author | ROYCHOWDHURY, PRASUN | en_US |
dc.date.accessioned | 2022-06-16T04:17:46Z | |
dc.date.available | 2022-06-16T04:17:46Z | |
dc.date.issued | 2022-10 | en_US |
dc.identifier.citation | Advances in Calculus of Variations, 15(4). | en_US |
dc.identifier.issn | 1864-8266 | en_US |
dc.identifier.uri | https://doi.org/10.1515/acv-2020-0035 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7087 | |
dc.description.abstract | We study the generalized eigenvalue problem in R N for a general convex nonlinear elliptic operator which is locally elliptic and positively 1-homogeneous. Generalizing [H. Berestycki and L. Rossi, Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains, Comm. Pure Appl. Math. 68 2015, 6, 1014–1065], we consider three different notions of generalized eigenvalues and compare them. We also discuss the maximum principles and uniqueness of principal eigenfunctions. | en_US |
dc.language.iso | en | en_US |
dc.publisher | De Gruyter | en_US |
dc.subject | Fully nonlinear operators | en_US |
dc.subject | Principal eigenvalue | en_US |
dc.subject | Dirichlet problem | en_US |
dc.subject | Half-eigenvalues | en_US |
dc.subject | Uniqueness | en_US |
dc.subject | 2022 | en_US |
dc.title | Generalized principal eigenvalues of convex nonlinear elliptic operators in ℝN | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Advances in Calculus of Variations | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.