Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7094
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBORAH, DIGANTAen_US
dc.contributor.authorVerma, Kaushalen_US
dc.date.accessioned2022-06-16T04:23:35Z
dc.date.available2022-06-16T04:23:35Z
dc.date.issued2022-05en_US
dc.identifier.citationComplex Variables and Elliptic Equations.en_US
dc.identifier.issn1747-6933en_US
dc.identifier.issn1747-6941en_US
dc.identifier.urihttps://doi.org/10.1080/17476933.2022.2069758en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7094
dc.description.abstractFor a bounded domain D⊂Cn, let KD=KD(z)>0 denote the Bergman kernel on the diagonal and consider the reproducing kernel Hilbert space of holomorphic functions on D that are square integrable with respect to the weight K−dD, where d≥0 is an integer. The corresponding weighted kernel KD,d transforms appropriately under biholomorphisms and hence produces an invariant Kähler metric on D. Thus, there is a hierarchy of such metrics starting with the classical Bergman metric that corresponds to the case d = 0. This note is an attempt to study this class of metrics in much the same way as the Bergman metric has been with a view towards identifying properties that are common to this family. When D is strongly pseudoconvex, the scaling principle is used to obtain the boundary asymptotics of these metrics and several invariants associated with them. It turns out that all these metrics are complete on strongly pseudoconvex domains.en_US
dc.language.isoenen_US
dc.publisherTalor & Francisen_US
dc.subjectNarasimhan–Simha-type metricsen_US
dc.subjectWeighted Bergman kernelen_US
dc.subjectBoundary behaviouren_US
dc.subject2022-JUN-WEEK3en_US
dc.subjectTOC-JUN-2022en_US
dc.subject2022en_US
dc.titleNarasimhan–Simha-type metrics on strongly pseudoconvex domains inen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleComplex Variables and Elliptic Equationsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.