Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7104
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Elumalai, Pavithra | en_US |
dc.contributor.author | YADAV, YASHARTH | en_US |
dc.contributor.author | Williams, Nitin | en_US |
dc.contributor.author | Saucan, Emil | en_US |
dc.contributor.author | Jost, Jürgen | en_US |
dc.contributor.author | Samal, Areejit | en_US |
dc.date.accessioned | 2022-06-16T04:23:36Z | |
dc.date.available | 2022-06-16T04:23:36Z | |
dc.date.issued | 2022-05 | en_US |
dc.identifier.citation | Scientific Reports, 12, 8295. | en_US |
dc.identifier.issn | 2045-2322 | en_US |
dc.identifier.uri | https://doi.org/10.1038/s41598-022-12171-y | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7104 | |
dc.description.abstract | While standard graph-theoretic measures have been widely used to characterize atypical resting-state functional connectivity in autism spectrum disorder (ASD), geometry-inspired network measures have not been applied. In this study, we apply Forman–Ricci and Ollivier–Ricci curvatures to compare networks of ASD and typically developing individuals (N = 1112) from the Autism Brain Imaging Data Exchange I (ABIDE-I) dataset. We find brain-wide and region-specific ASD-related differences for both Forman–Ricci and Ollivier–Ricci curvatures, with region-specific differences concentrated in Default Mode, Somatomotor and Ventral Attention networks for Forman–Ricci curvature. We use meta-analysis decoding to demonstrate that brain regions with curvature differences are associated to those cognitive domains known to be impaired in ASD. Further, we show that brain regions with curvature differences overlap with those brain regions whose non-invasive stimulation improves ASD-related symptoms. These results suggest the utility of graph Ricci curvatures in characterizing atypical connectivity of clinically relevant regions in ASD and other neurodevelopmental disorders. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Nature | en_US |
dc.subject | Applied mathematics | en_US |
dc.subject | Complex networks | en_US |
dc.subject | Computational neuroscience | en_US |
dc.subject | Computational science | en_US |
dc.subject | 2022-JUN-WEEK3 | en_US |
dc.subject | TOC-JUN-2022 | en_US |
dc.subject | 2022 | en_US |
dc.title | Graph Ricci curvatures reveal atypical functional connectivity in autism spectrum disorder | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Physics | en_US |
dc.identifier.sourcetitle | Scientific Reports | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.