Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7148
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | GOSWAMI, ANINDYA | en_US |
dc.contributor.author | Rana, Nimit | en_US |
dc.contributor.author | Siu,Tak Kuen | en_US |
dc.date.accessioned | 2022-06-24T10:26:14Z | |
dc.date.available | 2022-06-24T10:26:14Z | |
dc.date.issued | 2022-08 | en_US |
dc.identifier.citation | Journal of Mathematical Economics, 101, 102702. | en_US |
dc.identifier.issn | 0304-4068 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.jmateco.2022.102702 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7148 | |
dc.description.abstract | We consider a risk-sensitive optimization of consumption-utility on an infinite time horizon where the one-period investment gain depends on an underlying economic state whose evolution over time is assumed to be described by a discrete-time, finite-state, Markov chain. We suppose that the production function also depends on a sequence of independent and identically distributed (i.i.d.) random shocks. For the sake of generality, the utility and the production functions are allowed to be unbounded from above. Under the Markov regime-switching model, it is shown that the value function of optimization problem satisfies an optimality equation and that the optimality equation has a unique solution in a particular class of functions. Furthermore, we show that an optimal policy exists in the class of stationary policies. We also derive the Euler equation of optimal consumption. Furthermore, the existence of a joint stationary distribution of the optimal growth process and the underlying regime process is examined. Finally, we present a numerical solution by considering a power utility and some hypothetical values of parameters in a regime switching extension of the Cobb–Douglas production rate function. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier B.V. | en_US |
dc.subject | Regime switching models | en_US |
dc.subject | Growth models | en_US |
dc.subject | Risk sensitive preferences | en_US |
dc.subject | Optimal consumption | en_US |
dc.subject | Euler equation | en_US |
dc.subject | 2022-JUN-WEEK5 | en_US |
dc.subject | TOC-JUN-2022 | en_US |
dc.subject | 2022 | en_US |
dc.title | Regime switching optimal growth model with risk sensitive preferences | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Journal of Mathematical Economics | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.