Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7155
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBORAH, DIGANTAen_US
dc.contributor.authorKAR, DEBAPRASANNAen_US
dc.date.accessioned2022-06-24T10:26:15Z
dc.date.available2022-06-24T10:26:15Z
dc.date.issued2022-08en_US
dc.identifier.citationJournal of Mathematical Analysis and Applications, 512(2), 126162.en_US
dc.identifier.issn0022-247Xen_US
dc.identifier.issn1096-0813en_US
dc.identifier.urihttps://doi.org/10.1016/j.jmaa.2022.126162en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7155
dc.description.abstractThe Ricci curvature of the Bergman metric on a bounded domain is strictly bounded above by and consequently , where is the Bergman kernel for D on the diagonal and is the Riemannian volume element of the Bergman metric on D, is the potential for a Kähler metric on D known as the Kobayashi–Fuks metric. In this note we study the localization of this metric near holomorphic peak points and also show that this metric shares several properties with the Bergman metric on strongly pseudoconvex domains.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.subjectKobayashi–Fuks metricen_US
dc.subjectBergman kernelen_US
dc.subject2022-JUN-WEEK5en_US
dc.subjectTOC-JUN-2022en_US
dc.subject2022en_US
dc.titleSome remarks on the Kobayashi–Fuks metric on strongly pseudoconvex domainsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleJournal of Mathematical Analysis and Applicationsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.