Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7192
Full metadata record
DC FieldValueLanguage
dc.contributor.authorThangadurai, R.en_US
dc.contributor.authorVATWANI, A.en_US
dc.date.accessioned2022-06-24T10:42:13Z-
dc.date.available2022-06-24T10:42:13Z-
dc.date.issued2011-01en_US
dc.identifier.citationAmerican Mathematical Monthly, 118(8).en_US
dc.identifier.issn0002-9890en_US
dc.identifier.urihttps://doi.org/10.4169/amer.math.monthly.118.08.737en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7192-
dc.description.abstractIt is known that there are infinitely many primes congruent to 1 (mod n) for any integer n > 1. In this paper, we use an elementary argument to prove that the least such prime is at most 2ϕ(n) + 1 −1, where ϕ is the Euler totient function.en_US
dc.language.isoenen_US
dc.publisherTaylor & Francisen_US
dc.subjectMathemaitcisen_US
dc.subject2011en_US
dc.titleThe Least Prime Congruent to One Modulo nen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleAmerican Mathematical Monthlyen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.