Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7192
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Thangadurai, R. | en_US |
dc.contributor.author | VATWANI, A. | en_US |
dc.date.accessioned | 2022-06-24T10:42:13Z | - |
dc.date.available | 2022-06-24T10:42:13Z | - |
dc.date.issued | 2011-01 | en_US |
dc.identifier.citation | American Mathematical Monthly, 118(8). | en_US |
dc.identifier.issn | 0002-9890 | en_US |
dc.identifier.uri | https://doi.org/10.4169/amer.math.monthly.118.08.737 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7192 | - |
dc.description.abstract | It is known that there are infinitely many primes congruent to 1 (mod n) for any integer n > 1. In this paper, we use an elementary argument to prove that the least such prime is at most 2ϕ(n) + 1 −1, where ϕ is the Euler totient function. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Taylor & Francis | en_US |
dc.subject | Mathemaitcis | en_US |
dc.subject | 2011 | en_US |
dc.title | The Least Prime Congruent to One Modulo n | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | American Mathematical Monthly | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.