Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7241
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | KUNDU, RIJUBRATA | en_US |
dc.contributor.author | MONDAL, SUDIPA | en_US |
dc.date.accessioned | 2022-07-13T09:35:00Z | |
dc.date.available | 2022-07-13T09:35:00Z | |
dc.date.issued | 2022-09 | en_US |
dc.identifier.citation | Journal of Group Theory, 25(5), 941-964. | en_US |
dc.identifier.issn | 1435-4446 | en_US |
dc.identifier.uri | https://doi.org/10.1515/jgth-2021-0057 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7241 | |
dc.description.abstract | In this paper, we compute powers in the wreath product G≀SnG≀Sn for any finite group 𝐺. For r≥2r≥2 a prime, consider ωr:G≀Sn→G≀Snωr:G≀Sn→G≀Sn defined by g↦grg↦gr . Let Pr(G≀Sn):=|ωr(G≀Sn) | en_US |
dc.description.abstract | G|nn!Pr(G≀Sn):=|ωr(G≀Sn) | en_US |
dc.description.abstract | G|nn! be the probability that a randomly chosen element in G≀SnG≀Sn is an 𝑟-th power. We prove Pr(G≀Sn+1)=Pr(G≀Sn)Pr(G≀Sn+1)=Pr(G≀Sn) for all n≢−1(modr)n≢-1(modr) if the order of 𝐺 is coprime to 𝑟. We also give a formula for the number of conjugacy classes that are 𝑟-th powers in G≀SnG≀Sn . | en_US |
dc.language.iso | en | en_US |
dc.publisher | De Gruyter | en_US |
dc.subject | Mathematics | en_US |
dc.subject | 2022 | en_US |
dc.title | Powers in wreath products of finite groups | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Journal of Group Theory | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.