Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7241
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKUNDU, RIJUBRATAen_US
dc.contributor.authorMONDAL, SUDIPAen_US
dc.date.accessioned2022-07-13T09:35:00Z
dc.date.available2022-07-13T09:35:00Z
dc.date.issued2022-09en_US
dc.identifier.citationJournal of Group Theory, 25(5), 941-964.en_US
dc.identifier.issn1435-4446en_US
dc.identifier.urihttps://doi.org/10.1515/jgth-2021-0057en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7241
dc.description.abstractIn this paper, we compute powers in the wreath product G≀SnG≀Sn for any finite group 𝐺. For r≥2r≥2 a prime, consider ωr:G≀Sn→G≀Snωr:G≀Sn→G≀Sn defined by g↦grg↦gr . Let Pr(G≀Sn):=|ωr(G≀Sn)en_US
dc.description.abstractG|nn!Pr⁢(G≀Sn):=|ωr⁢(G≀Sn)en_US
dc.description.abstractG|n⁢n! be the probability that a randomly chosen element in G≀SnG≀Sn is an 𝑟-th power. We prove Pr(G≀Sn+1)=Pr(G≀Sn)Pr⁢(G≀Sn+1)=Pr⁢(G≀Sn) for all n≢−1(modr)n≢-1⁢(mod⁢r) if the order of 𝐺 is coprime to 𝑟. We also give a formula for the number of conjugacy classes that are 𝑟-th powers in G≀SnG≀Sn .en_US
dc.language.isoenen_US
dc.publisherDe Gruyteren_US
dc.subjectMathematicsen_US
dc.subject2022en_US
dc.titlePowers in wreath products of finite groupsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleJournal of Group Theoryen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.