Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7259
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | DASGUPTA, JYOTI | en_US |
dc.contributor.author | KHAN, BIVAS | en_US |
dc.contributor.author | Subramaniam, Aditya | en_US |
dc.date.accessioned | 2022-07-22T10:55:28Z | |
dc.date.available | 2022-07-22T10:55:28Z | |
dc.date.issued | 2022-04 | en_US |
dc.identifier.citation | Journal of Algebra, 595, 38-68. | en_US |
dc.identifier.issn | 0021-8693 | en_US |
dc.identifier.issn | 1090-266X | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.jalgebra.2021.11.040 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7259 | |
dc.description.abstract | We compute Seshadri constants of a torus equivariant nef vector bundle on a projective space satisfying certain conditions. As an application, we compute Seshadri constants of tangent bundles on projective spaces. We also consider equivariant nef vector bundles on Bott towers of height 2 (i.e. Hirzebruch surfaces) and Bott towers of height 3 respectively. Assuming some conditions on the minimal slope of the restrictions of these bundles to invariant curves, we give precise values of Seshadri constant at an arbitrary point. We also give several examples illustrating our results. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier B.V. | en_US |
dc.subject | Bott tower | en_US |
dc.subject | Mori cone | en_US |
dc.subject | Vector bundles | en_US |
dc.subject | Seshadri constant | en_US |
dc.subject | 2022-JUL-WEEK2 | en_US |
dc.subject | TOC-JUL-2022 | en_US |
dc.subject | 2022 | en_US |
dc.title | Seshadri constants of equivariant vector bundles on toric varieties | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Journal of Algebra | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.