Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7286
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ganguly, Debdip | en_US |
dc.contributor.author | Pinchover, Yehuda | en_US |
dc.contributor.author | ROYCHOWDHURY, PRASUN | en_US |
dc.date.accessioned | 2022-07-29T09:06:04Z | |
dc.date.available | 2022-07-29T09:06:04Z | |
dc.date.issued | 2022-07 | en_US |
dc.identifier.citation | Discrete and Continuous Dynamical Systems-Series S | en_US |
dc.identifier.issn | 1937-1632 | en_US |
dc.identifier.issn | 1937-1179 | en_US |
dc.identifier.uri | https://doi.org/10.3934/dcdss.2022138 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7286 | |
dc.description.abstract | Let P be a linear, second-order, elliptic operator with real coefficients defined on a noncompact Riemannian manifold M and satisfies P1 = 0 in M. Assume further that P admits a minimal positive Green function in M. We prove that there exists a smooth positive function rho defined on M such that M is stochastically incomplete with respect to the operator P-rho := rho P, that is,integral(M)kP(rho)(M)(x, y, t) dy < 1 for all (x, t) is an element of M x (0, infinity), where kP(rho)(M )denotes the minimal positive heat kernel associated with P-rho. Moreover, M is L-1-Liouville with respect to P-rho if and only if M is L-1-Liouville with respect to P. In addition, we study the interplay between stochastic completeness and the L-1-Liouville property of the skew product of two second-order elliptic operators. | en_US |
dc.language.iso | en | en_US |
dc.publisher | American Institute of Mathematical Sciences | en_US |
dc.subject | Green function | en_US |
dc.subject | L1-Liouville | en_US |
dc.subject | Optimal Hardy-weight | en_US |
dc.subject | Stochastically incomplete | en_US |
dc.subject | 2022-JUL-WEEK4 | en_US |
dc.subject | TOC-JUL-2022 | en_US |
dc.subject | 2022 | en_US |
dc.title | Stochastic completeness and $ L^1 $-Liouville property for second-order elliptic operators | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Discrete and Continuous Dynamical Systems-Series S | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.