Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7286
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGanguly, Debdipen_US
dc.contributor.authorPinchover, Yehudaen_US
dc.contributor.authorROYCHOWDHURY, PRASUNen_US
dc.date.accessioned2022-07-29T09:06:04Z
dc.date.available2022-07-29T09:06:04Z
dc.date.issued2022-07en_US
dc.identifier.citationDiscrete and Continuous Dynamical Systems-Series Sen_US
dc.identifier.issn1937-1632en_US
dc.identifier.issn1937-1179en_US
dc.identifier.urihttps://doi.org/10.3934/dcdss.2022138en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7286
dc.description.abstractLet P be a linear, second-order, elliptic operator with real coefficients defined on a noncompact Riemannian manifold M and satisfies P1 = 0 in M. Assume further that P admits a minimal positive Green function in M. We prove that there exists a smooth positive function rho defined on M such that M is stochastically incomplete with respect to the operator P-rho := rho P, that is,integral(M)kP(rho)(M)(x, y, t) dy < 1 for all (x, t) is an element of M x (0, infinity), where kP(rho)(M )denotes the minimal positive heat kernel associated with P-rho. Moreover, M is L-1-Liouville with respect to P-rho if and only if M is L-1-Liouville with respect to P. In addition, we study the interplay between stochastic completeness and the L-1-Liouville property of the skew product of two second-order elliptic operators.en_US
dc.language.isoenen_US
dc.publisherAmerican Institute of Mathematical Sciencesen_US
dc.subjectGreen functionen_US
dc.subjectL1-Liouvilleen_US
dc.subjectOptimal Hardy-weighten_US
dc.subjectStochastically incompleteen_US
dc.subject2022-JUL-WEEK4en_US
dc.subjectTOC-JUL-2022en_US
dc.subject2022en_US
dc.titleStochastic completeness and $ L^1 $-Liouville property for second-order elliptic operatorsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleDiscrete and Continuous Dynamical Systems-Series Sen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.