Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7318
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | MOHAN, ASWATHI T. | en_US |
dc.contributor.author | GHOSH, PRASENJIT | en_US |
dc.date.accessioned | 2022-08-19T11:27:13Z | |
dc.date.available | 2022-08-19T11:27:13Z | |
dc.date.issued | 2022-08 | en_US |
dc.identifier.citation | Physical Chemistry Chemical Physics, 24(32), 19512-19520. | en_US |
dc.identifier.issn | 1463-9076 | en_US |
dc.identifier.issn | 1463-9084 | en_US |
dc.identifier.uri | https://doi.org/10.1039/D2CP02787A | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7318 | |
dc.description.abstract | Abatement of CO, due to its poisonous nature, is an extensively researched topic. Oxidation to CO2 is one of the strategies deployed and finds application in automobiles and fuel cells. Gold nanoparticles on an oxide support is a pioneering catalyst in this field, but need improvement in cost, stability, and O2 activation. Doping with Cu can open up avenues for improvement in these attributes. In the present investigation, we have explored the possibility of using bimetallic AunCum (n + m = 4) clusters supported on Ti2CO2 MXene. We find that AuCu3 is the most stable cluster on the support. The complete CO oxidation cycle on this supported cluster proceeds through a mix of Langmuir–Hinshelwood (LH) and Eley–Rideal (ER) mechanisms. Our calculations predict that the first cycle is expected to proceed only via the LH mechanism due to kinetic and thermodynamic limitations ascribed to ER and Mars van Krevelen (MvK) mechanisms, respectively. The second cycle, however, prefers ER over the LH mechanism. Overall, with the highest barrier of 0.56 eV, this low cost novel catalyst performs better in terms of stability and/or activity in comparison with many of the catalysts reported in the literature. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Royal Society of Chemistry | en_US |
dc.subject | Transition-metal carbides | en_US |
dc.subject | Carbon-monoxide | en_US |
dc.subject | Supported gold | en_US |
dc.subject | Au clusters | en_US |
dc.subject | Size | en_US |
dc.subject | CU | en_US |
dc.subject | Surface | en_US |
dc.subject | Copper | en_US |
dc.subject | Tio2 | en_US |
dc.subject | Atom | en_US |
dc.subject | 2022-AUG-WEEK3 | en_US |
dc.subject | TOC-AUG-2022 | en_US |
dc.subject | 2022 | en_US |
dc.title | A low cost bimetallic AuCu3 tetramer on Ti2CO2 MXene as an efficient catalyst for CO oxidation: a theoretical prediction | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Chemistry | en_US |
dc.contributor.department | Dept. of Physics | en_US |
dc.identifier.sourcetitle | Physical Chemistry Chemical Physics | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.