Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7323
Title: Boundary regularity of mixed local-nonlocal operators and its application
Authors: BISWAS, ANUP
MODASIYA, MITESH
SEN, ABHROJYOTI
Dept. of Mathematics
Keywords: Operators of mixed order
Semilinear equation
Overdetermined problems
Gradient estimate
2022-AUG-WEEK3
TOC-AUG-2022
2023
Issue Date: Apr-2023
Publisher: Springer Nature
Citation: Annali di Matematica Pura ed Applicata (1923 -), 202(2), 679–710.
Abstract: Let ΩΩ be a bounded C2C2 domain in RnRn and u∈C(Rn)u∈C(Rn) solves Δu+aIu+C0|Du|≥−KinΩ,Δu+aIu−C0|Du|≤KinΩ,u=0inΩc,Δu+aIu+C0|Du|≥−KinΩ,Δu+aIu−C0|Du|≤KinΩ,u=0inΩc, in the viscosity sense, where 0≤a≤A00≤a≤A0, C0,K≥0C0,K≥0, and I is a suitable nonlocal operator. We show that u/δu/δ is in Cκ(Ω¯)Cκ(Ω¯) for some κ∈(0,1)κ∈(0,1), where δ(x)=dist(x,Ωc)δ(x)=dist⁡(x,Ωc). Using this result, we also establish that u∈C1,γ(Ω¯)u∈C1,γ(Ω¯).Finally, we apply these results to study an overdetermined problem for mixed local-nonlocal operators
URI: https://doi.org/10.1007/s10231-022-01256-0
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7323
ISSN: 0373-3114
1618-1891
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.