Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7323
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBISWAS, ANUPen_US
dc.contributor.authorMODASIYA, MITESHen_US
dc.contributor.authorSEN, ABHROJYOTIen_US
dc.date.accessioned2022-08-19T11:27:14Z
dc.date.available2022-08-19T11:27:14Z
dc.date.issued2023-04en_US
dc.identifier.citationAnnali di Matematica Pura ed Applicata (1923 -), 202(2), 679–710.en_US
dc.identifier.issn0373-3114en_US
dc.identifier.issn1618-1891en_US
dc.identifier.urihttps://doi.org/10.1007/s10231-022-01256-0en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7323
dc.description.abstractLet ΩΩ be a bounded C2C2 domain in RnRn and u∈C(Rn)u∈C(Rn) solves Δu+aIu+C0|Du|≥−KinΩ,Δu+aIu−C0|Du|≤KinΩ,u=0inΩc,Δu+aIu+C0|Du|≥−KinΩ,Δu+aIu−C0|Du|≤KinΩ,u=0inΩc, in the viscosity sense, where 0≤a≤A00≤a≤A0, C0,K≥0C0,K≥0, and I is a suitable nonlocal operator. We show that u/δu/δ is in Cκ(Ω¯)Cκ(Ω¯) for some κ∈(0,1)κ∈(0,1), where δ(x)=dist(x,Ωc)δ(x)=dist⁡(x,Ωc). Using this result, we also establish that u∈C1,γ(Ω¯)u∈C1,γ(Ω¯).Finally, we apply these results to study an overdetermined problem for mixed local-nonlocal operatorsen_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectOperators of mixed orderen_US
dc.subjectSemilinear equationen_US
dc.subjectOverdetermined problemsen_US
dc.subjectGradient estimateen_US
dc.subject2022-AUG-WEEK3en_US
dc.subjectTOC-AUG-2022en_US
dc.subject2023en_US
dc.titleBoundary regularity of mixed local-nonlocal operators and its applicationen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleAnnali di Matematica Pura ed Applicata (1923 -)en_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.