Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7325
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLIGO Scientific Collaborationen_US
dc.contributor.authorVirgo Collaborationen_US
dc.contributor.authorKAGRA Collaborationen_US
dc.contributor.authorAbbott, R.en_US
dc.contributor.authorSOURADEEP, TARUN et al.en_US
dc.date.accessioned2022-08-26T11:53:42Z
dc.date.available2022-08-26T11:53:42Z
dc.date.issued2022-08en_US
dc.identifier.citationAstrophysical Journal, 935(1).en_US
dc.identifier.issn0004-637Xen_US
dc.identifier.issn1538-4357en_US
dc.identifier.urihttps://doi.org/10.3847/1538-4357/ac6acfen_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7325
dc.description.abstractWe present a targeted search for continuous gravitational waves (GWs) from 236 pulsars using data from the third observing run of LIGO and Virgo (O3) combined with data from the second observing run (O2). Searches were for emission from the l = m = 2 mass quadrupole mode with a frequency at only twice the pulsar rotation frequency (single harmonic) and the l = 2, m = 1, 2 modes with a frequency of both once and twice the rotation frequency (dual harmonic). No evidence of GWs was found, so we present 95% credible upper limits on the strain amplitudes h0 for the single-harmonic search along with limits on the pulsars' mass quadrupole moments Q22 and ellipticities ε. Of the pulsars studied, 23 have strain amplitudes that are lower than the limits calculated from their electromagnetically measured spin-down rates. These pulsars include the millisecond pulsars J0437−4715 and J0711−6830, which have spin-down ratios of 0.87 and 0.57, respectively. For nine pulsars, their spin-down limits have been surpassed for the first time. For the Crab and Vela pulsars, our limits are factors of ∼100 and ∼20 more constraining than their spin-down limits, respectively. For the dual-harmonic searches, new limits are placed on the strain amplitudes C21 and C22. For 23 pulsars, we also present limits on the emission amplitude assuming dipole radiation as predicted by Brans-Dicke theory.en_US
dc.language.isoenen_US
dc.publisherIOP Publishingen_US
dc.subjectGravitational wavesen_US
dc.subjectGravitational wave sourcesen_US
dc.subjectPulsarsen_US
dc.subjectNeutron starsen_US
dc.subject2022-AUG-WEEK4en_US
dc.subjectTOC-AUG-2022en_US
dc.subject2022en_US
dc.titleSearches for Gravitational Waves from Known Pulsars at Two Harmonics in the Second and Third LIGO-Virgo Observing Runsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Physicsen_US
dc.identifier.sourcetitleAstrophysical Journalen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.