Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7420
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBHIMANI, DIVYANG G.en_US
dc.contributor.authorHaque, Saikatulen_US
dc.date.accessioned2022-10-28T09:11:50Z
dc.date.available2022-10-28T09:11:50Z
dc.date.issued2023-03en_US
dc.identifier.citationAnnales Henri Poincare, 24(3), 1005 - 1049.en_US
dc.identifier.issn1424-0637en_US
dc.identifier.issn1424-0661en_US
dc.identifier.urihttps://doi.org/10.1007/s00023-022-01234-5en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7420
dc.description.abstractWe establish some local and global well-posedness for Hartree–Fock equations of N particles (HFP) with Cauchy data in Lebesgue spaces Lp∩L2 for 1≤p≤∞. Similar results are proven for fractional HFP in Fourier–Lebesgue spaces Lˆp∩L2 (1≤p≤∞). On the other hand, we show that the Cauchy problem for HFP is mildly ill-posed if we simply work in Lˆp (2<p≤∞). Analogue results hold for reduced HFP. In the process, we prove the boundedeness of various trilinear estimates for Hartree type non linearity in these spaces which may be of independent interest. As a consequence, we get natural Lp and Lˆp extension of classical well-posedness theories of Hartree and Hartree–Fock equations with Cauchy data in just L2−based Sobolev spaces.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectMathematicsen_US
dc.subject2022-OCT-WEEK3en_US
dc.subjectTOC-OCT-2022en_US
dc.subject2023en_US
dc.titleThe Hartree and Hartree–Fock Equations in Lebesgue Lp and Fourier–Lebesgue Lˆp Spacesen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleAnnales Henri Poincareen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.