Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7454
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBhattacharyya, Tirthankaren_US
dc.contributor.authorDas, B. Krishnaen_US
dc.contributor.authorSAU, HARIPADAen_US
dc.date.accessioned2022-11-14T04:05:45Z
dc.date.available2022-11-14T04:05:45Z
dc.date.issued2022-10en_US
dc.identifier.citationInternational Journal of Mathematics, 33(12), 2250076.en_US
dc.identifier.issn0129-167Xen_US
dc.identifier.issn1793-6519en_US
dc.identifier.urihttps://doi.org/10.1142/S0129167X22500768en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7454
dc.description.abstractWhen is the collection of S-Toeplitz operators with respect to a tuple of commuting bounded operators S=(S1,S2,…,Sd−1,P), which has the symmetrized polydisc as a spectral set, nontrivial? The answer is in terms of powers of P as well as in terms of a unitary extension. En route, the Brown–Halmos relations are investigated. A commutant lifting theorem is established. Finally, we establish a general result connecting the C∗-algebra generated by the commutant of S and the commutant of its unitary extension R.en_US
dc.language.isoenen_US
dc.publisherWorld Scientific Publishingen_US
dc.subjectSymmetrized polydiscen_US
dc.subjectPolydiscen_US
dc.subjectToeplitz operatoren_US
dc.subjectContractive Hilbert modulesen_US
dc.subjectContractive embeddingsen_US
dc.subject2022-NOV-WEEK1en_US
dc.subjectTOC-NOV-2022en_US
dc.subject2022en_US
dc.titleToeplitz operators and Hilbert modules on the symmetrized polydiscen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleInternational Journal of Mathematicsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.