Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7494
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArapostathis, Arien_US
dc.contributor.authorBISWAS, ANUPen_US
dc.contributor.authorROYCHOWDHURY, PRASUNen_US
dc.date.accessioned2022-12-09T05:55:58Z
dc.date.available2022-12-09T05:55:58Z
dc.date.issued2023-01en_US
dc.identifier.citationNonlinear Differential Equations and Applications, 30, 10.en_US
dc.identifier.issn1021-9722en_US
dc.identifier.issn1420-9004en_US
dc.identifier.urihttps://doi.org/10.1007/s00030-022-00821-zen_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7494
dc.description.abstractWe study the generalized eigenvalue problem on the whole space for a class of integro-differential elliptic operators. The nonlocal operator is over a finite measure, but this has no particular structure. Some of our results even hold for singular kernels. The first part of the paper presents results concerning the existence of a principal eigenfunction. Then we present various necessary and/or sufficient conditions for the maximum principle to hold, and use these to characterize the simplicity of the principal eigenvalue.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectPrincipal eigenvalueen_US
dc.subjectNonlocal operatorsen_US
dc.subjectMaximum principleen_US
dc.subjectSimple eigenvalueen_US
dc.subjectHarnack inequalityen_US
dc.subject2022-DEC-WEEK1en_US
dc.subjectTOC-DEC-2022en_US
dc.subject2023en_US
dc.titleGeneralized principal eigenvalues on Rd of second order elliptic operators with rough nonlocal kernelsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleNonlinear Differential Equations and Applicationsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.