Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7602
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBHIMANI, DIVYANG G.en_US
dc.date.accessioned2023-02-08T03:47:34Z
dc.date.available2023-02-08T03:47:34Z
dc.date.issued2023-03en_US
dc.identifier.citationNonlinear Differential Equations and Applications, 30(2), 19.en_US
dc.identifier.issn1021-9722en_US
dc.identifier.issn1420-9004en_US
dc.identifier.urihttps://doi.org/10.1007/s00030-022-00828-6en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7602
dc.description.abstractWe produce a finite time blow-up solution for nonlinear fractional heat equation (& part;(t)u + (-delta)(beta /2u) = u(k)) in modulation and Fourier amalgam spaces on the torus T-d and the Euclidean space R-d. This complements several known local and small data global well-posedness results in modulation spaces on R-d. Our method of proof rely on the formal solution of the equation. This method should be further applied to other non-linear evolution equations.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectFractional heat equationsen_US
dc.subjectBlow-up solutionen_US
dc.subjectModulation spacesen_US
dc.subjectFourier amalgam spacesen_US
dc.subject2023-FEB-WEEK1en_US
dc.subjectTOC-FEB-2023en_US
dc.subject2023en_US
dc.titleThe blow-up solutions for fractional heat equations on torus and Euclidean spaceen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleNonlinear Differential Equations and Applicationsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.