Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7602
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | BHIMANI, DIVYANG G. | en_US |
dc.date.accessioned | 2023-02-08T03:47:34Z | |
dc.date.available | 2023-02-08T03:47:34Z | |
dc.date.issued | 2023-03 | en_US |
dc.identifier.citation | Nonlinear Differential Equations and Applications, 30(2), 19. | en_US |
dc.identifier.issn | 1021-9722 | en_US |
dc.identifier.issn | 1420-9004 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s00030-022-00828-6 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7602 | |
dc.description.abstract | We produce a finite time blow-up solution for nonlinear fractional heat equation (& part;(t)u + (-delta)(beta /2u) = u(k)) in modulation and Fourier amalgam spaces on the torus T-d and the Euclidean space R-d. This complements several known local and small data global well-posedness results in modulation spaces on R-d. Our method of proof rely on the formal solution of the equation. This method should be further applied to other non-linear evolution equations. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Nature | en_US |
dc.subject | Fractional heat equations | en_US |
dc.subject | Blow-up solution | en_US |
dc.subject | Modulation spaces | en_US |
dc.subject | Fourier amalgam spaces | en_US |
dc.subject | 2023-FEB-WEEK1 | en_US |
dc.subject | TOC-FEB-2023 | en_US |
dc.subject | 2023 | en_US |
dc.title | The blow-up solutions for fractional heat equations on torus and Euclidean space | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Nonlinear Differential Equations and Applications | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.