Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7657
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKALELKAR, TEJASen_US
dc.contributor.authorNair, Ramyaen_US
dc.date.accessioned2023-03-13T10:35:52Z-
dc.date.available2023-03-13T10:35:52Z-
dc.date.issued2023en_US
dc.identifier.citationTopology Proceedings, 62, 45-63.en_US
dc.identifier.issn2331-1290en_US
dc.identifier.issn0146-4124en_US
dc.identifier.urihttp://topology.nipissingu.ca/tp/reprints/v62/tp62004p1.pdfen_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7657-
dc.description.abstractA prism is the product space ∆ × I where ∆ is a 2- simplex and I is a closed interval. We introduce prism complexes as an analogue of simplicial complexes and show that every compact 3-manifold has a prism complex structure. We call a prism complex special if each interior horizontal edge lies in four prisms, each boundary horizontal edge lies in two prisms, and no horizontal face lies on the boundary. We give a criterion for existence of horizontal surfaces in (possibly non-orientable) Seifert ber spaces. Using this, we show that a compact 3-manifold admits a special prism complex structure if and only if it is a Seifert ber space with nonempty boundary, a Seifert ber space with a non-empty collection of surfaces in its exceptional set, or a closed Seifert ber space with Euler number zero. So, in particular, a compact 3-manifold with boundary is a Seifert ber space if and only if it has a special prism complex structure.en_US
dc.language.isoenen_US
dc.publisherNipissing University, North Bay, Ontario, Canada.en_US
dc.subjectCube complexesen_US
dc.subjectSeifert fiber spaceen_US
dc.subject2023-MAR-WEEK2en_US
dc.subjectTOC-MAR-2023en_US
dc.subject2023en_US
dc.titlePrism Complexesen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleTopology Proceedingsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.