Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7674
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSeethalakshmi, Kayanattathen_US
dc.contributor.authorSPALLONE, STEVENen_US
dc.date.accessioned2023-03-24T09:11:02Z
dc.date.available2023-03-24T09:11:02Z
dc.date.issued2023-02en_US
dc.identifier.citationRamanujan Journal, 61, 989–1019.en_US
dc.identifier.issn1382-4090en_US
dc.identifier.issn1572-9303en_US
dc.identifier.urihttps://doi.org/10.1007/s11139-023-00699-0en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7674
dc.description.abstractLet s, t be natural numbers and fix an s-core partition sigma and a t-core partition tau. Put d = gcd(s, t) and m = lcm(s, t), and write N-sigma,N-tau(k) for the number of m-core partitions of length no greater than k whose s-core is sigma and t-core is tau. We prove that for k large, N-sigma,N-tau (k) is a quasipolynomial of period m and degree 1/d (s - d)(t - d).en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectT-core partitionsen_US
dc.subjectEhrhart’s theoremen_US
dc.subjectTransportation polytopesen_US
dc.subject2023-MAR-WEEK3en_US
dc.subjectTOC-MAR-2023en_US
dc.subject2023en_US
dc.titleA Chinese Remainder Theorem for partitionsen_US
dc.typeArticleen_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.identifier.sourcetitleRamanujan Journalen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:JOURNAL ARTICLES

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.