Please use this identifier to cite or link to this item:
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7674
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Seethalakshmi, Kayanattath | en_US |
dc.contributor.author | SPALLONE, STEVEN | en_US |
dc.date.accessioned | 2023-03-24T09:11:02Z | |
dc.date.available | 2023-03-24T09:11:02Z | |
dc.date.issued | 2023-02 | en_US |
dc.identifier.citation | Ramanujan Journal, 61, 989–1019. | en_US |
dc.identifier.issn | 1382-4090 | en_US |
dc.identifier.issn | 1572-9303 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s11139-023-00699-0 | en_US |
dc.identifier.uri | http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7674 | |
dc.description.abstract | Let s, t be natural numbers and fix an s-core partition sigma and a t-core partition tau. Put d = gcd(s, t) and m = lcm(s, t), and write N-sigma,N-tau(k) for the number of m-core partitions of length no greater than k whose s-core is sigma and t-core is tau. We prove that for k large, N-sigma,N-tau (k) is a quasipolynomial of period m and degree 1/d (s - d)(t - d). | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Nature | en_US |
dc.subject | T-core partitions | en_US |
dc.subject | Ehrhart’s theorem | en_US |
dc.subject | Transportation polytopes | en_US |
dc.subject | 2023-MAR-WEEK3 | en_US |
dc.subject | TOC-MAR-2023 | en_US |
dc.subject | 2023 | en_US |
dc.title | A Chinese Remainder Theorem for partitions | en_US |
dc.type | Article | en_US |
dc.contributor.department | Dept. of Mathematics | en_US |
dc.identifier.sourcetitle | Ramanujan Journal | en_US |
dc.publication.originofpublisher | Foreign | en_US |
Appears in Collections: | JOURNAL ARTICLES |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.