Please use this identifier to cite or link to this item: http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7680
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCHORWADWALA, ANISA M. H.-
dc.contributor.authorRoy, Souvik-
dc.contributor.editorMariano, Paolo Maria-
dc.date.accessioned2023-03-31T08:53:20Z-
dc.date.available2023-03-31T08:53:20Z-
dc.date.issued2021-10-
dc.identifier.citationVariational Views in Mechanics, 157–183.en_US
dc.identifier.isbn978-3-030-90051-9-
dc.identifier.isbn978-3-030-90050-2-
dc.identifier.urihttps://link.springer.com/chapter/10.1007/978-3-030-90051-9_6en_US
dc.identifier.urihttp://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/7680-
dc.description.abstractIn this chapter, we consider an obstacle placement problem inside a disk, represented by a shape optimization problem to find the maximum or the minimum fundamental eigenvalue of a general divergence form elliptic operator. The obstacle is invariant under the action of a dihedral group, which is usually the case with regular polygons and ellipses. This is a generalization of a previous work by the same authors concerning the fundamental Dirichlet eigenvalue optimization. We show that when the order of symmetry of the obstacle is even, the extremal configurations for the fundamental eigenvalue, with respect to rotations of the obstacle, correspond to the cases where an axis of symmetry of the obstacle coincides with an axis of symmetry of the disk. For the case of odd order of symmetry, we provide conjectures about the extremal configurations. Furthermore, for both even and odd symmetry cases, we characterize the global extremal configurations with respect to rotations and translations of the obstacle. Finally, we provide results of several numerical experiments for obstacles with different orders of symmetries and two different types of elliptic operators, which validates our theoretical findings.en_US
dc.language.isoenen_US
dc.publisherSpringer Natureen_US
dc.subjectElliptic eigenvalue problemen_US
dc.subjectExtremal fundamental eigenvalueen_US
dc.subjectDihedral groupen_US
dc.subjectShape optimizationen_US
dc.subjectFinite element methoden_US
dc.subjectMoving plane methoden_US
dc.subject2021en_US
dc.titlePlacement of an Obstacle for Optimizing the Fundamental Eigenvalue of Divergence Form Elliptic Operatorsen_US
dc.typeBook chapteren_US
dc.contributor.departmentDept. of Mathematicsen_US
dc.title.bookVariational Views in Mechanicsen_US
dc.identifier.doihttps://doi.org/10.1007/978-3-030-90051-9_6en_US
dc.identifier.sourcetitleVariational Views in Mechanicsen_US
dc.publication.originofpublisherForeignen_US
Appears in Collections:BOOK CHAPTERS

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.